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SUMMARY 

Computing free surface gravity flows involves basically two coupled problems, namely, the location of the free 
surface position and the determination of the internal flow field (for assumed values H ,  and Q ofthe total head 
and discharge, respectively). 

Solution techniques are invariably based on iterative procedures, but those that iterate between the two 
coupled problems may become unstable. 

In this paper we present a computational method in which the coupling is kept throughout the process of 
iteration. This is achieved by converting the coupled problems (by means of the Kantorovich method) into the 
single problem of finding a set of streamlines, including that of the free surface. These streamlines are moved 
(iteratively) to satisfy the stationary conditions of the governing variational principle. 

The algorithm is very stable and converges rapidly. It is also easy to implement to solve various types of 
steady flows with a free surface under gravity. 
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1. INTRODUCTION 

Computational techniques for free-surface gravity flows continues to be an active area of 
research. The problem is not a simple one even when neglecting surface tension and viscosity and 
assuming flows to be steady and irrotational. In this paper we are concerned with this restricted 
version of the problem. Yeungl has given an up to date account of some of the most popular 
methods employed in computing free surface flows in the sense adopted here. 

The distinguishing feature of free-surface flows is that the position of the free surface is not 
known a pviori. Therefore, the flow domain itself is unknown. This problem constitutes the difficult 
part and is non-linear. The other problem is the determination of the internal flow field. This is an 
easy problem (linear) and consists of solving Laplace's equation subject to appropriate boundary 
conditions. The solution to these coupled problems is usually accomplished by handling the non- 
linear free-surface condition in a variety of iterative techniques. 

The finite difference method was applied by Southwell and Vaisey' to compute various examples 
of free-surface flows. Theirs was the first reported attempt to solve these problems numerically. A 
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popular technique in more recent times is the finite element method. This has been used to compute 
flows over a ~ p i l l w a y , ~ , ~  critical flows over and water etc. Boundary integral 
techniques have also been applied to compute surface problems. Their merits stem from the fact 
that iterative procedures are needed only on the free surface, without explicit coupling to the 
internal flow problem. Byatt-Smith and Longuet-Higginsg used this technique to compute solitary 
waves. 

Improved techniques based on power series expansions have been used by Cokelet to compute 
water waves." His numerical results are reported to be very accurate for a certain range of waves. 
Cokelet's technique makes use of Pade approximants, which extend beyond the radius of 
convergence of ordinary power series. The use of Pade approximants in free-surface problems was 
introduced by Schwartz" in 1974 who was concerned with the study of water waves. 

Hodograph transformations have been used in the past to solve some free-surface problems of 
the type we are concerned with here, but the success of this technique was confined to problems 
with small gravitational effects. Quite recently however, Han and Chow' have successfully 
applied this method to compute more general free surface gravity flows. 

In this paper we introduce the application of the Kantorovich method13 to solve free-surface 
problems numerically. The theoretical aspects of the Kantorovich method are found in 
Reference 13. The principal objective of this paper is to present a detailed description of the derived 
numerical technique and to illustrate its implementation for practical applications. A validation of 
the method has been carried out by the authors and details of comparison with other numerical, 
theoretical and experimental data are reported in References 6 and 7. 

The present model starts from a formulation of the problem in terms of a stream function $ and a 
variational principle with functional J .  The coupled problems of finding the free surface and the 
internal flow field are converted into the single problem of finding a set of N streamlines 
y,(x)(i = 1,. . . , N )  to make J stationary. The solid boundary defining the bed profile and the 
free surface are both streamlines and we denote them by yo(x) and y,(x), respectively. The stream 
function I,!J takes on constant values Qi on each streamline yi(x). Since I,!J is to take on the value zero 
on the free surface and the value of the discharge Q on the bed (or vice versa), a natural choice for Q i  

is Q(N - i),". That is to say, the interval [0, Q ]  has been discretized by N + 1 equally spaced points 
Qi into N subintervals. I) is specified on each streamline. Within the stream layers we introduced an 
approximation whereby $ is interpolated to be linear in y. This is the first semidiscrete 
approximation of the problem and it remains continuous in x. Stationary conditions on J yield a 
system of non-linear ordinary differential equations for the unknown streamlines yi(x)  

In Section 4 we approximate the problem further by expressing derivatives in terms of finite 
differences. In this way the system of non-linear ordinary differential equations is reduced to a 
system of N x M non-linear algebraic equations. Considerable attention has been paid here to the 
efficiency with which these algebraic equations are solved. Obviously, the use of any library routine 
may prove satisfactory for practical applications. But, as reported in Reference 6, large problems 
become very demanding in computing time. 

Here we achieved efficiency by (i) deriving the stationary equations analytically, (ii) differentiat- 
ing the stationary equations exactly to determine their Jacobian matrix, (iii) using the banded 
structure of the Jacobian matrix and (iv) carefully programming the algebra. A Newton-Raphson 
iteration procedure is used to solve the non-linear system. The algorithm is described in Section 5 
and it is found to be very stable and efficient in computing time even for near-critical flows.6 Its 
double-precision implementation would normally require about six iterations to terminate with 
both the residuals in the stationary equations and the maximum movement of the streamlines 
becoming less than 10-l4. 

( i  = 1,. . . , N). 
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In Section 6, as an illustration, we have included some wave computations. These are not aimed 
at analysing water-wave characteristics, but simply as an example of application of the method. 

2. STATEMENT AND FORMULATION OF THE PROBLEM 

We consider non-viscous flows with a free surface under gravity which are steady, two- 
dimensional, incompressible and irrotational. In terms of a volumetric stream function +(x, y )  both 
the bed (a fixed boundary) and the free surface are streamlines. A typical flow domain is shown in 
Figure 1, where H o  measures the stagnation level (total head), L gives the length of the flow region 
in the x-direction, b(x) is the position of the prescribed bed profile and h(x) measures the depth of 
flow, which is to be determined. 

Under the stated physical assumptions and appropriate boundary conditions we obtain the 
following boundary value problem: 

I a2$  a2+ 

a x 2  a y 2  
-+ -=O in R 

$ = Q  on BD 
$ = O  on FS 

a+ 
an 
- = 0  on BF and 

where Q denotes the discharge and g the acceleration due to gravity. 
The boundary conditions at the inlet and outlet boundaries correspond to normal flow and are 

adequate for most applications. The second (non-linear) boundary condition (2) on the free surface 
FS is derived from Bernoulli's law under the assumption of atmospheric pressure. 

Equation (1) gives the flow field for an assumed position of FS, and prescribed values for the 
total head H, and the discharge Q. We call this the +-problem. Equation (2) provides a condition 
for finding the correct position of the unknown boundary FS, determined by h(x). We term this the 
H-problem. 

Figure 1 .  Flow domain with a free surface under gravity 
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In some situations the parameters of the problem H ,  and Q become themselves unknowns to be 

The free boundary value problem (l), (2), which governs the combined H-$ problems, is 
determined e.g. critical flows over w e i n - ’  

equivalent to the non-dimensionalized variational prob1eml4 with functional 
b(x )  + h(x)  

b ( x )  
J ( W ,  $(x, Y ) )  = 1: 1 Ct(V$)’ - Y l  dxdy (3) 

together with the constraints 

$ = Q on BD and $ = O  on FS (4) 
This means that for given H ,  and Q a solution of the combined H-$ problems is a stationary 

point of the functional J .  In expressions (3) and (4) all quantities have been non-dimensionalized 
with respect to length H ,  and time (H,/g)”2,  including the x and y co-ordinates. 

The variational formulation as given by (3) and (4) is the starting point for direct finite element 
discretizations as in References 3-6 and 11 etc. 

3.  DERIVATION OF THE SEMIDISCRETE EQUATION 
BY THE KANTOROVICH METHOD 

The Kantorovich method, or semidiscrete method, is a generalization of the Ritz method and is 
similar to the method of lines and its generalization, the method of discretization in time.’ 5 .  

In this section we apply the Kantorovich method directly to the problem as formulated in 
Section 2 in terms of a stream function and a variational principle (equations (3) and (4)). 

From equation (4) we have I) = Q (the discharge) on the bed and $ = 0 on the free surface. We 
begin by subdividing the interval [0, Q] into a number N of subintervals I i  = [Qi-  1, Qi]  of equal 
length Q/N,  corresponding to stream layers. That is 

Qi-  = Q(N - i + 1)/N and Qi = Q(N - i ) /N,  for i = 1,. . . , N 

To each number Qi we associate a streamline yi(x) on which the stream function $(x, y) takes on the 
constant value Qi (see Figure 2). In this way we determine N stream layers Ri associated with 1, and 
defined as follows: 

R, = {(x,y), such that 0 6 x  d L; y i -  (x) d y d y,(x)} 

No approximation has been imposed so far. The bed and free surface profiles are still the 

Now we introduce our first approximation by defining the stream function $(x,y) on each 
streamlines of the original flow domain. 

subdomain Ri as follows 

so that 
t+hi(x, y )  = Q{ y i -  (x) - y + hi(x)(N - i + l ) } /Nh i (x ) ,  for i = 1,. . . , N ( 5 )  

Notice that the required boundary conditions are satisfied automatically and that for each 
streamline we have 

y i ( x ) =  t hj(x) 
j = O  

with h,(x) representing the bed elevation (fixed) above a horizontal datum y = - 1. 
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Figure 2. Flow domain subdivided into N stream layers Ri 

As illustrated in Figure 2, each stream layer Ri has unknown thickness ki(x). The unknown 
streamlines y l ( x ) ,  . . . , yN(x )  are determined by the functions k, (x) ,  . . . , kN(x). At this stage we 
emphasize that the problem offinding $(x, y) and k(x)  as defined in Section 2, has been transformed 
into the problem of finding the set of functions h,(x), . . . , kN(x).  These functions are to satisfy a 
system of non-linear (ordinary) differential equations, as we shall see later. 

Obviously, the points Qi in the interval [O, Q] need not be taken equally spaced. Similarly, the 
approximation for the stream function $ defined by equation (5 )  need not be linear in y on each 
subdomain Ri, but may be of higher order. 

Next, we evaluate the functional J in terms of the admissible functions $i.  From equation (5) we 
obtain 

(6) 1 a$i/ax = Q{kiy;- ,  - k;(y,- ,  - y ) ) /Nk?  

d$,/ay = - Q/Nki 

where for convenience the arguments x and y have been dropped and a prime denotes 
differentiation with respect to x. 

The functional J ,  evaluated over the stream layer R j ,  may be expressed as 

J(Ri) = Fi(x, hi, hi) dx s: 
where 

Fi(x, hi, hi) = {@$i)' - Y} dy s:1, 
By substituting the partial derivatives given by equation (6)  into Fj(x ,  hi, hi) we obtain 

Fi(x, hi, hi) = Q2(3 + 3yi2 , + 3y;- ,hi + ki2)/(6N2k?) - (2yi- + hi)ki/2 
By setting 

k = (h,,.  . . ,hN); h' = (h',,. . . ,gN) 

(7) 
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and 
N 

F(x, h, h') = 1 FAX, hj, h;) 
j =  1 

the functional J evaluated over the entire flow domain becomes 

The solution to the problem as stated in Section 2 is a stationary point of the functional J ,  which 
satisfies the Euler-Lagrange equations 

d 
dx 

Gi = dF/dhi - -(dF/dh:) = 0, for i = 1,. . . , N 

Some algebraic manipulations lead to the following system of ordinary differential equations for 
the unknown functions h,(x), . . . , hN(x)  

N 

+ 3 c ((h,h:' - h:2 + 2(h,y:'- 1 - h:y:- J)/h;} 
r = i +  1 

(9) 

together with the boundary conditions 

h:(O) = h:(L) = 0, for i = 1,. . . , N (10) 

The problem as expressed by equations (9) and (10) remains continuous in x. At this intermediate 
stage between the original problem and the final numerical results some of the features of the 
Kantorovich method suggest themselves. One may explore the possibility of finding exact 
solutions to (9) and (10) or analysing some characteristics of the stationary point before arriving at 
numbers. However, such work is beyond the scope of the present paper. Nevertheless, it is 
interesting to note that the special case N = 1 constitutes a shallow water type of approximation6 
for which solutions can be given explicitly in terms of cnoidal functions. 

4. DERIVATION OF THE DISCRETE NON-LINEAR 
EQUATIONS AND THEIR JACOBIAN 

The algorithm presented in this paper is based on the numerical solution of the non-linear 
boundary value problem (9), (10). We call the algorithm NODE, which stands for Non-linear 
Ordinary Differential Equations. 

In order to solve (9) and (10) we first approximate derivatives in (9) by finite differences in the 
usual manner. In this way the differential problem (9), (10) is reduced to a system of algebraic (non- 
linear) equations. It is these discrete equations which we eventually solve numerically. 

In this section we indicate the derivation of the algebraic equations and their corresponding 
Jacobian matrix, which are given expiicitly in the Appendix. 

The domain for equations (9) is discretized by M equally spaced points xjG = 1,. . ., M).  We set 
c = h,, - hj, hlj  = hi(xj) and use second order central differences for first and second derivatives 
and fictitious nodes xo and x M +  with boundary conditions 

h,, = hlz; hlM- = hrM+ for i = 0,. . . , N (1 1) 
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After some algebra we obtain an expression for the general stationary equation (discrete) G, = 0 
for j = 1,. . . , M and i = 1,. . . , N .  (Equations (12) in the Appendix). 

Equations (12) are a system of non-linear algebraic equations to be solved for N x M unknowns 
h,. Given a flow-domain length L and a bed profile determined by hoj( j  = 1,. . . , M )  we need to 
prescribe the mesh size N x M and the discharge Q. 

In Reference 6 we used a general library subroutine due to BrownI6 and this proved satisfactory 
for most applications considered there, although it was not designed for the present purpose. For 
large problems the computing time became prohibitively long. The present version of the 
algorithm is efficient in terms of storage requirements and computing time. 

We solve equations (12) by a Newton-Raphson iteration procedure where the entries of the 
Jacobian matrix S are derived analytically. This gives significant savings in computing time 
compared with numerical evaluation of derivatives from Gij-function evaluations. In addition 
advantage is taken of the banded structure of the Jacobian matrix in the direct solution for each 
Newton-Raphson iteration. 

As evident in (12) and in Figure 3,  a function Gij involves at most 3N variables, namely h k j -  h k j  
and hkj+ (for k = 1,. . . , N). At the inlet and outlet boundaries only 2N variables are involved after 
using boundary conditions (1 1). Thus the Jacobian matrix S has block tridiagonal form with blocks 
of order N x N and bandwidth 4N - 1. The coupling between columns of variables hij in Figure 3 
gives full block matrices on the sub- and super-diagonals. We use a fixed bandwidth solver for 
bandwidth 4N - 1 without exploiting zeros within that bandwidth since there is little gain in doing 

It would be possible to obtain a system of equations with only 9-point coupling by working in 
node positions y , j  instead of stream layer thicknesses hi,. This would save in assembly time and 
storage, but the resulting bandwidth would still be 2N + 3 so that solution time saving would be 
limited. It is not clear how this would affect the performance and stability of the method for the 
non-linearities. 

In the present method there are nine types of equations for the elements of the Jacobian matrix S.  
Three cases come from considering all variables lying below layer i at stations j - 1, j and j + 1. 

so. 

stagnation l e v e l  

x1 j-1 J 'jtl x;v; x .  

Figure 3. Discretized flow domain expressed in terms of variables hij  ( j  = 1,. . . , M ;  i = 1,. . . , N )  
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F R O M  E Q U A T I O N S  ( 1 2 ) - ( 1 3 )  

r 

Another three cases arise from layer i and finally three more cases come from variables above 
layer i. 

The nine types of equations for the entries of the Jacobian matrix are given explicitly in the 
Appendix (equations (1 3)). 

k = k t l  

5. SOLUTION OF THE NON-LINEAR ALGEBRAIC EQlJATIONS 

The system of equations (12) is solved here by a Newton-Raphson type of iteration, whereby at 
iteration k + 1 we solve a linear system of equations 

Sk6 = - G (14) k 

for a vector 6 of corrections 6,, to hi j .  
Sk and Gk denote the Jacobian matrix and the residuals in the stationary equations evaluated at 

the previous iteration number k.  The corrected value for the vector H of unknowns h,  is given as 

~ k +  1 = ~k + 6 (15) 

The iteration procedure as given by equations (14) and (15) proceeds as illustrated by the 

S O L V E  S Y S T E M  ( 1 4 )  
U S I N G  N A G  R O U T I N E S  
F O l L B F  A N D  F O L l L D F  

S T A R T  k = l  (7 
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diagram of Figure 4. It takes normally about six iterations to obtain a converged solution. The 
process is stopped when both the function residuals and the maximum streamline movement are 
less than a preassigned value for the tolerance TOL. In all computations we took TOL = 

The resulting computational method performs very well when applied to real problems. In 
Reference 6 reference was made to the remarkable stability of the method when computing critical 
flows and large-amplitude water waves. This feature is confirmed here. The algorithm (in double 
precision) is programmed in FORTRAN 77 in the AMDAHL V/7 computer of the University of 
Leeds. As an indication of the computing time required for this algorithm, a large amplitude water 
wave in the short wave region using a 10 x 8 mesh took 1.2s starting from a sinusoidal initial 
surface profile. Previous calculations for the same problem on a UNIVAC 11 10 using only a 
general purpose non-linear solver took some 3000 times longer. 

6. AN ILLUSTRATIVE EXAMPLE: WAVES 

For the purpose of illustrating a relatively simple application of NODE, we consider here the 
problem of computing waves over a horizontal bed. Surface gravity waves of permanent form on 
water of finite depth, when considered in a frame of reference that is fixed relative to a wave crest, 
may be represented in the present model of steady ideal flow. 

Here we choose an example which has already been computed by Southwell and Vaisey.2 Its 
computational aspects are very straightforward indeed, which is particularly helpful in highlight- 
ing the features of the present method. 

The aim is to compute waves on a stream of fixed depth h = 11/12. That is to say, a constant 
depth h and velocity I/ are postulated for the undisturbed stream. The uniform flow relation 

Q2 = 2h2(1 - h) 

gives the corresponding value Q’ = 01400463. 
Other data values to be provided are the channel length L and the mesh size N x M and the 

initial values for the streamlines. Symmetry allows only half a wave to be considered. From the 
boundary conditions being imposed, we expect to compute waves with trough at the inlet and crest 
at the outlet, or vice versa. 

The prescribed channel length Lis related to the flow rate Q (or equally to the undisturbed depth 
h)  and to the amplitude of the wave to be computed. Any arbitrary choice of L will generally 
produce only the uniform flow solution of depth h. Small amplitude waves have wavelength A, 
related to h by the linearized theory: 

A, = 4z(1 - h)/tanh (2nh/A0) (16) 

As the amplitude increases, so the wavelength decreases (in the short wave region as for this 
example). By prescribing values of L slightly below A0/2 it is possible to compute finite-amplitude 
waves. Values of L slightly above 1,/2 may give computed waves on a coarse mesh, but refinement 
restricts solutions to the case L d  A0/2. Solving (16) iteratively gives A, = 1.047 in the case 
considered. In Figure 5 we illustrate a computed wave for I = 093 (L= 0.465). The computed 
amplitude is A = 0.071 1. Here we take A as the displacement of the free surface at the crest above 
the position of the undisturbed stream h. The mesh used in all computations reported here was 
15 x 10 and total CPU time was about 4 s  for each wave starting from a sinusoidal surface. 

From a large number of computations we have observed that the algorithm is capable of 
computing waves of practically all realistic amplitudes. Since the amplitude emerges as a result of 
computation, a check against the linear theory (see equation (16)) can be carried out by curve fitting 
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I-- i 

Figure 5. Computed wave for R = 093 and h = 11/12 

in the (1, A)-plane. This technique gives a limiting solution Lo = 1,047 correctly to three decimal 
places. The computed solution of Southwell and Vaisey2 is Lo = 1.1 1, which is about 6 per cent 
higher than our computed value and the theoretical solution. 

7. CONCLUSIONS 

A method has been presented for the computation of steady ideal flows with a free surface under 
gravity. The method determines the flow by moving streamlines to satisfy a variational formulation 
of the flow conditions including the free-surface pressure condition. 

The method has been thoroughly validated against other numerical and experimental results for 
the case of critical flows over weirs and against linearized wave theory, pai:ticularly in Reference 6. 
In this paper the method is presented in an improved form in respect of computational efficiency. 

Advantages which the method offers include robust stable performance in calculating large- 
amplitude waves and critical flows for which other methods have encountered difficulties. The 
method is also easily implemented and efficient, requiring only a few seconds of computing time for 
problems of about 170 nodes, or about a minute for about 900 nodes, for strongly non-linear 
problems. 

The program is applicable to a range of problems with free surfaces under gravity and arbitrary 
bed configuration. The method could also be adapted for other free-surface flow problems such as 
those with cavitation or jets. 
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APPENDIX 

Here we give the stationary equations Gij and the entries of the Jacobian matrix dGij/ahk,,, 

Gij = C(Aij + Bij) - yNj  = 0, i = 1 , .  . . , N ;  j = 1, .  . . , M (12) 
with C = - Q2/(24c2N2) and 

Shi,(hij+l -2hij+hij-,)-(hij+l -hij-1)2+ 12~’ A. .  - 
h: 1; - 

I (Yi- 1 j +  1 - Yi - 1 j -  i)2 + 4hij(~i- 1 j +  1 - 2Yi- i j + Yi-  1 j -  1 )  

h; 

4 h r j ( h r j + l - 2 h r j + h r j - , ) - ( h r j + l  -hrj-1)2 

+ 3 {  

+ 8( 

Bij=3 C 
r = i + l  “I V j  

) Y r - 1  j+1-2Yr-1 j + Y r - 1  j - 1  

hrj 

11 (hrj+ 1 - hrj- l ) ( Y r -  1 j +  1 - Y r -  1 j -  1) 

- 2{ h?j 
The Jacobian entries are given as S t i  = i3Gij/dhk,, where the range of values for k is 1 < k < i for the 
first 3 equations. k = i for the following 3 and i < k < N for the last 3 equations. 

N 
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